Showing posts with label Media. Show all posts
Showing posts with label Media. Show all posts

Monday, 14 July 2014

Mathematics through the eyes of the players

2014 marks the 50th anniversary of the Institute of Mathematics and its Applications.
To commemorate this momentous occasion not only did they have the usual conferences and celebratory talks but they also published a book.

 50 visions of mathematics is available from the OUP website for a price of £24.99. Think about it… that’s two visions of maths per pound! Who can argue with such a bargain?

Contained within this fully illustrated book you will find 50 chapters of interesting, often cutting edge and, certainly diverse mathematics. All of the articles are written from the personal view points of the authors. The individual and personal tones of the chapters gives them an authentic voice that conveys the excitement and love of the authors and will undoubtedly convince any cynical reader as to the wide ranging power of mathematics.

The authors (whose roster boasts such names as David Acheson, Simon Singh and Ian Stewart) come from many different backgrounds such as: research; teaching and science communication. So, you can be sure that the chapters are written to entertain as well as inform.

I, too, have written a chapter for the book on my favourite subject of Turing patterns. Not only am I excited at the chance to demonstrate their mathematical and visual beauty (blog posts on Turing patterns can be found here and here) to a wide audience, but I have also been immortalised in the pages of the book. When talking about the application of Turing patterns to animal skins (discussed here) I make reference to the ring tailed lemur contradicting the theory. Luckily, I had recently fed some ring tailed lemurs in Newquay zoo and so my picture (a different one below) can now be found in every copy of the book.
Myself and Lorraine feeding some very lovely lemurs at Newquay zoo.
Apart from my own ego stroking there are articles concerning the mathematics seen in the recent movie “Sherlock Holmes: A Game of Shadows” written by Derek Moulton and Alain Goriely, who were actually employed by the filmmakers to come up with Moriarty’s codes. There are interesting chapters about the medical applications of mathematics from Richard Elwes and Carson C. Chow. There is even a chapter on the mathematics of murder scenes, which discusses how to calculate the original location of a set of blood splashes.

There are a few chapters that feel a little “in jokey” and not to my taste, including how different sources might quote Pythagoras’ theorem. For example you might see tweets saying
“OMG, for right angled triangle squares on sides add up :) #pythagoras”.
However, these are small details and I can think of no recent brief anthology that can give you a better range of mathematics across history and application. Perhaps, more importantly, the book gives you insights into the people behind the mathematics. It demonstrates that mathematicians are human too. We are interested in using mathematics to make the world a better place and we want to communicate these ideas to people like you.

In summary, you will know if this is book is for you. If you are a recreational scientist interested in the forefront of  mathematics then I happily recommend it.

Monday, 10 March 2014

Barry's journey through science journalism.

This week we continue with Barry Cipra’s life story and delve more into his career, whilst see just how much luck you need to enjoy a career in science journalism.
________________________________________________________________
________________________________________

How did you get your big break?
Figure 1. Barry Cipra. Photo by Marlene Knoche
I had links with Lynn Steen from when I was St Olaf’s college. He is a very good writer and was very active in maths education. Early on he discovered that I was a fairly good writer and I often spoke to him about taking my mathematical writings further. In my mind I would follow in the popular science footsteps of Martin Gardener, or Ian Stewart. I had no notion of science writing as a journalist. It was Lynn that pushed me towards reporting.

It was around this time, early 1987, that Gina Kolata left Science magazine for the New York Times. She had done all of the maths news reporting for Science magazine. Lynn, being amongst other things the maths secretary of AAAS, which publishes Science magazine, called up the editor and put my name forward. Much of the credit, and blame, for what I have become is directly attributable to Lynn Steen!

It only dawned on me later how unusual it was to get a call from the editor of one of the most prestigious journals in the world and have them ask me to write for them. That’s why I always try and offer any help I can give to the new generation of science writers.

As you say, you were very lucky to get your big break into science journalism. Do you think it is easier, or harder, now-a-days to make a career in science writing?
Honestly, I don’t know.

What is true is that because there are so many more possible sources of self publishing there are many more people doing it. Most of this is unpaid and done purely as a hobby, but occasionally it does attract attention of people which then pushes them towards further opportunities. In essence it’s a buyer’s market. Editors have more choice of science writers to choose from.

What is your favourite area to report on?
I try to report on as wide a range of topics as possible, so I don’t get trapped in a single niche. I enjoy reporting on the applications on mathematics, not only because they’re very important, but also (being a lazy journalist) you can easily connect it to your audience’s experiences.

One of my favourite stories was from mathematical economics, where they were trying to match donors and recipients for kidney transplants. Alvin Roth, the man behind this research, recently won the economics Nobel prize, partly for this work. I like to think my article bought his work to the attention of the judges!
Overall it’s a good topic because the problem is easy to explain, the mathematics is fairly simple and the dramatic outcome is amazing. Importantly, with just a little maths you gain the ability to prove that your system is completely resistant to people trying to cheat the system.

Perhaps my favourite piece of all time was on rotationally symmetric Venn diagrams. It was easily explainable maths linked with incredibly beautiful results.
[Barry expanded on this greatly and will be the subject of an article later]

What advice would you give to the next generation of science writers?
Firstly, I would say: don’t do it! I was very lucky to get the breaks I did. However, if that doesn’t dissuade you I would firmly recommend one of these formal science writing courses, such as the one University of California, Santa Cruz. They produce first rate reporters, who all speak highly of the program.

A key piece of advice I can give for a successful career in journalism is find a good editor and be able to take criticism. By the very nature of writing it is very easy to get into a mental rut of saying things in one way. It is very useful to get someone else to look at your work and give an alternative explanation.
________________________________________________________________
________________________________________
Although this is the end of Barry’s biography, we are not done with him yet. Over the next few posts I will highlight a few of the beautiful puzzles and games that he introduced to me.

Monday, 24 February 2014

The making of Barry Cipra

On the second of October 2013 I got the chance to meet up with mathematical journalist Barry Cipra. He is a regular contributor to SIAM news as well as a correspondent for Science magazine. He writes the “What’s Happening in the Mathematical Sciences” series, and is the author of “Misteaks... and How to Find Them Before the Teacher Does: A Calculus Supplement”.

He was in Oxford to cover the opening of the new Mathematical Institute and the accompanying Clay conference which presented talks on the cutting edge of pure mathematics. However, my interest was piqued when he gave a talk called
“The benefits of not paying attention”.
Being a huge maths puzzle fan I turned the tables on Barry and so the reporter became the reported.

Over the next few weeks I will present Barry’s interview, in which we touch on: his history, his suggestions for people trying to break in to science journalism and, finally, some puzzles that he created when his attention should have been elsewhere.
________________________________________________________________
________________________________________
Since your job is to take mathematical ideas and make them understandable to a general audience, could you describe your Ph.D work on modular forms?
Figure 1. Barry Cipra.
There is a famous sequence in a documentary of Fermat’s last theorem, in which a number of eminent mathematicians such as Peter Sarnak and John Conway were asked to describe modular forms… they all just laughed. However, I will try my best.

Modular forms are analytic functions that embody all sorts of number theoretic information. The specific thing I worked on was something called the Shimura lift [1], which allowed us to map modular forms of half integral “weight” to integral weight. Shimura’s original work was incredibly general, but only kicked in when the weight was 5/2, or larger. My work at Maryland was to reduce this to weights of 3/2.

As you can see, my work was very technical. Personally I am impressed at how much I can remember from over 30 years ago!

Where did your career take you after Ph.D?
During my first post-doc at MIT I began talking to a visitor of the chemistry department, who was really a mathematician at heart. We spoke about a problem he was having in ferromagnetism and its links to the Ising model, which is a problem in statistical physics. From our work together I wrote a beginners guide to the Ising model and its underlying mathematics. This led to me receiving a highly complementary letter through the mail, written in shaky handwriting, from a 90 year old Ernst Ising. I really should get the letter out some time to ensure that he really was saying nice things about me. At least I don’t remember him pointing out mistakes.

I then had a string of further post-docs and when I came to the end of my last one I looked around at academic positions and the alternatives of getting a “real job”. Luckily I had a number of contacts who pushed me in a different direction.

When was the decision to move towards journalism? Was it a conscious decision? Or was it a more gradual process?
It was pretty conscious as I’ve always had an interest in writing; ever since grade school. My only formal training was a journalism class I took at my high school and then worked on the school newspaper the following year.

Do you miss doing, rather than reporting, maths?
I still dabble in low level, recreational style problems. I try to come up with problems that may have some deeper connections. Quite a few of the problems I’ve generated are simple to state but defy simple explanations. However, if there is any true significance in my questions, I leave that up to the researcher trying to find the answer.

I did collaborate with some people from St Olaf’s college on a “billiards in polygons” problem, particularly in right angled triangles. We proved that if you started on one of the sides that wasn’t the hypotenuse and shot the billiard ball at a right angle from your chosen starting point then for almost all starting points, the trajectory is periodic.

My main role in all of this was to say,
“I don’t really understand what you just said, could you explain it a bit more?” and then, hopefully, “ah yes, I see we can now make that mathematically rigorous”.
________________________________________________________________
________________________________________
Next time Barry will be giving us a few tips on how best to go about getting into science journalism. See you then.

[1] A a pertinent paper can be found here. Although it is not for the faint hearted, or those without a degree in modular forms, you can clearly see from the first few lines that they use Cipra’s theorem. Sadly, being an applied mathematician I will never have theory named after me.

Monday, 8 August 2011

What "The Code" could have been...

On Wednesday 27th July 2011 a new three part documentary hit the British television. It was called The Code, hosted by Professor Marcus du Sautoy and had the intention of demonstrating how mathematics can be used to unravel the mysterious code that surrounds the natural and man-made world. The reaction to the shows has been mainly positive and some of the footage has truly been breathtaking (see the footage below of the bubbles creating the platonic solids, incredible!).



Whatever your thoughts or feelings are about The Code, I wanted to share with you some information about what The Code could have been and let you make your own mind up as to whether they chose the right program.

At the beginning of February 2010 I had the amazing fortune to be asked if I would like to work as a researcher on a new mathematics program called The Code. Of course I jumped at the chance. So the things I explain here are my from my own experience. They are not hearsay or rumours, just plans that never came to fruition.

The competition aspect of The Code was there from the start and it was always the intention to have the programs weave with online content. However, the style of the show had originally been very different. The plan was to team Marcus up with a different celebrity each week and challenge them to do something amazing. The celebrity would admit that they could not complete the task and the program would track the celebrities progress as Marcus tries to teach them the various, simple mathematical principles that would allow the celebrity to achieve their goal.

My job was to develop the celebrity challenges. It certainly was not easy. I had to produce an exciting result using simple mathematics. My favourite example that I came up with was:
get the celebrity to try and measure the height of a cliff standing over water. Tape measures wouldn't be possible, so, instead, they would have to learn trigonometry.
Now you may think that is extremely mundane, however, the next part of the challenge was to:
get the celebrity to jump of the cliff using a bungee cord based on their calculation.
Not only do the have to work with heights but they have to take into account the extension of the chord as well. They would literally be placing their lives into the hands of mathematics.

I created five or six such activities like that mentioned above, wrote them up in a treatment, was paid for my work and left White City, having had an amazing experience. However, on my last day I was told what would then happen to my work. The pitch would go forward and either get funded or not. If the idea was not commissioned it would be recycled until they found a format that worked. If it got funded, the project would get sent to a production team who could COMPLETELY IGNORE all the development work!

So the next time you watch an episode of The Code (the last episode is to be aired Wednesday 10th August), think about what it could have turned into and ask yourself:
Did the BBC make the right choice?